40 research outputs found

    Amplification of Angular Rotations Using Weak Measurements

    Get PDF
    We present a weak measurement protocol that permits a sensitive estimation of angular rotations based on the concept of weak-value amplification. The shift in the state of a pointer, in both angular position and the conjugate orbital angular momentum bases, is used to estimate angular rotations. This is done by an amplification of both the real and imaginary parts of the weak-value of a polarization operator that has been coupled to the pointer, which is a spatial mode, via a spin-orbit coupling. Our experiment demonstrates the first realization of weak-value amplification in the azimuthal degree of freedom. We have achieved effective amplification factors as large as 100, providing a sensitivity that is on par with more complicated methods that employ quantum states of light or extremely large values of orbital angular momentum.Comment: 5 pages, 3 figures, contains supplementary informatio

    Experimental generation of an optical field with arbitrary spatial coherence properties

    Get PDF
    We describe an experimental technique to generate a quasi-monochromatic field with any arbitrary spatial coherence properties that can be described by the cross-spectral density function, W(r1,r2)W(\mathbf{r_1,r_2}). This is done by using a dynamic binary amplitude grating generated by a digital micromirror device (DMD) to rapidly alternate between a set of coherent fields, creating an incoherent mix of modes that represent the coherent mode decomposition of the desired W(r1,r2)W(\mathbf{r_1,r_2}). This method was then demonstrated experimentally by interfering two plane waves and then spatially varying the coherent between these two modes such that the interference fringe visibility was shown to vary spatially between the two beams in an arbitrary and prescribed way.Comment: 6 pages, 5 figur

    Multiplexing Free-Space Channels using Twisted Light

    Get PDF
    We experimentally demonstrate an interferometric protocol for multiplexing optical states of light, with potential to become a standard element in free-space communication schemes that utilize light endowed with orbital angular momentum (OAM). We demonstrate multiplexing for odd and even OAM superpositions generated using different sources. In addition, our technique permits one to prepare either coherent superpositions or statistical mixtures of OAM states. We employ state tomography to study the performance of this protocol, and we demonstrate fidelities greater than 0.98.Comment: 4 pages, 3 figure

    Rapid Generation of Light Beams Carrying Orbital Angular Momentum

    Get PDF
    We report a technique for encoding both amplitude and phase variations onto a laser beam using a single digital micro-mirror device (DMD). Using this technique, we generate Laguerre-Gaussian and vortex orbital-angular-momentum (OAM) modes, along with modes in a set that is mutually unbiased with respect to the OAM basis. Additionally, we have demonstrated rapid switching among the generated modes at a speed of 4 kHz, which is much faster than the speed regularly achieved by spatial light modulators (SLMs). The dynamic control of both phase and amplitude of a laser beam is an enabling technology for classical communication and quantum key distribution (QKD) systems that employ spatial mode encoding

    Free-space communication through turbulence: a comparison of plane-wave and orbital-angular-momentum encodings

    Get PDF
    Free-space communication allows one to use spatial mode encoding, which is susceptible to the effects of diffraction and turbulence. Here, we discuss the optimum communication modes of a system while taking such effects into account. We construct a free-space communication system that encodes information onto the plane-wave (PW) modes of light. We study the performance of this system in the presence of atmospheric turbulence, and compare it with previous results for a system employing orbital-angular-momentum (OAM) encoding. We are able to show that the PW basis is the preferred basis set for communication through atmospheric turbulence for a large Fresnel number system. This study has important implications for high-dimensional quantum key distribution systems

    An Improved Volumetric Metric for Quantum Computers via more Representative Quantum Circuit Shapes

    Full text link
    In this work, we propose a generalization of the current most widely used quantum computing hardware metric known as the quantum volume. The quantum volume specifies a family of random test circuits defined such that the logical circuit depth is equal to the total number of qubits used in the computation. However, such square circuit shapes do not directly relate to many specific applications for which one may wish to use a quantum computer. Based on surveying available resource estimates for known quantum algorithms, we generalize the quantum volume to a handful of representative circuit shapes, which we call Quantum Volumetric Classes, based on the scaling behavior of the logical circuit depth (time) with the problem size (qubit number).Comment: 13 pages, 5 figures, v2 corrects equation erro

    Sensitive estimation of angular displacements using weak measurements

    Get PDF
    We demonstrate an experimental method that allows for sensitive measurements of angular position of light using weak value amplification. This offers an alternative to previously established methods that use nonclassical light for angular displacement estimation
    corecore